જો $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1),$ કે જ્યાં વિધેય $f$ એ દરેક પ્રાકૃતિક સંખ્યા $x, y$ માટે $f(x + y) = f(x) f(y)$ નું પાલન કરે છે અને $f(1) = 2$ તો પ્રાકૃતિક સંખ્યા $‘ a '$ મેળવો.
$4$
$16$
$2$
$3$
$f(1)+f(2)+3 f(3)+\ldots+x f(x)=x(x+1) f(x) ; x \geq 2$ જ્યાં $f(1)=1$ નું સમાધાન કરતો વિધેય $f: N \rightarrow R$ ધ્યાને લો તો $\frac{1}{f(2022)}+\frac{1}{f(2028)}=............$
જો $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 + .... + \infty } } } } \right)$ હોય તો $x$ ની કિમત .......... થાય.
વિધેય $f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ નો પ્રદેશ્ગણ ........... થાય. $($ જ્યા $[.] \rightarrow G.I.F.)$
કોઈક વાસ્તવિક અચળાંક $a$ માટે વિધેય $f: R-\{-a\} \rightarrow R$ તથા $f(x)=\frac{a-x}{a+x}$ હોય વધારામાં ધારો કે કોઈક વાસ્તવિક સંખ્યા $x \neq- a$ અને $f( x ) \neq- a$ માટે $( fof )( x )= x$ થાય તો $\left(-\frac{1}{2}\right)$ ની કિમત શોધો
ધારો કે $\mathrm{A}=\{1,3,7,9,11\}$ અને $\mathrm{B}=\{2,4,5,7,8,10,12\}$. તો $f(1)+f(3)=14$ થાય તેવા એક-એક વિધેયો $f: A \rightarrow B$ ની કુલ સંખ્યા .......... છે.